Balancing Chemical Equations

- We balance equations with coefficients to following the Law of Conservation of Mass.
- Remember that you choose an element on left side of the equation. Ask yourself, "How many of that element are on the right side of the equation." Then use a coefficient to "balance" them to be the same number.
- You might have to use the least common multiple.
- Keep polyatomic ions together as a unit. For example, "How many phosphates do I have on the left side? How many phosphates do I have on the right side?"

1) $\ldots \mathrm{F}_{2}+2 \mathrm{NaI} \rightarrow 2 \mathrm{NaF}+\ldots \mathrm{I}_{2}$
2) $2 \mathrm{Na}_{3} \mathrm{P}+3 \mathrm{CaF}_{2} \rightarrow 6 \mathrm{NaF}+$ \qquad $\mathrm{Ca}_{3} \mathrm{P}_{2}$
3) $2 \mathrm{Na}_{3} \mathrm{PO}_{4}+3 \mathrm{CaCl}_{2} \rightarrow 6 \mathrm{NaCl}+$ \qquad $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
4) $2 \mathrm{Al}+6 \mathrm{HNO}_{3} \rightarrow 2 \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}+3 \mathrm{H}_{2}$
5) $3 \mathrm{FeCO}_{3}+2 \mathrm{Li}_{3} \mathrm{PO}_{4} \rightarrow$ \qquad $\mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2}+3 \mathrm{Li}_{2} \mathrm{CO}_{3}$

Identifying, Writing, \& Balancing Chemical Reactions

Step 1: Write the formulas for the reactants.
Step 2: Identify the type of reaction.

- Synthesis: $A+B \rightarrow A B$
- Decomposition: $A B \rightarrow A+B$
- Single Replacement: $A+B C \rightarrow A C+B$ (always pair cation \& anion!)
- Double Replacement: $A B+C D \rightarrow A D+C B$

Step 3: Write the formulas for the reactants.

* Cross charges where elements are bonded.
* When an element is alone, check to see if it is diatomic: Br INClHOF
- If it is, put a subscript of 2

Step 4: Balance the equation.

Reaction type?		Complete the reaction and balance.
1)	Synthesis	Sodium + chlorine \rightarrow $2 \mathrm{Na}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{NaCl}$
2)	Double replacement	Calcium fluoride + iron II hydroxide \rightarrow CaF2 $+\mathrm{Fe}(\mathrm{OH})_{2} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{FeF}_{2} \quad * *$ it's already balanced!
3)	Decomposition	Strontium nitride \rightarrow $S_{3} \mathrm{~N}_{2} \rightarrow 3 \mathrm{Sr}+\mathrm{N}_{2}$
4)	Single replacement *PreIB the activity series is not on the sol Test	$\mathrm{Magnesium} \mathrm{chloride}+$ potassium $\rightarrow_{\mathrm{MgCl}_{2}+2 \mathrm{~K} \rightarrow 2 \mathrm{KCl}+\mathrm{Mg}}$

