Balancing Chemical Equations

- We balance equations with coefficients to following the Law of Conservation of Mass.
- Remember that you choose an element on left side of the equation. Ask yourself, "How many of that element are on the right side of the equation." Then use a coefficient to "balance" them to be the same number.
- You might have to use the least common multiple.
- Keep polyatomic ions together as a unit. For example, "How many phosphates do I have on the left side? How many phosphates do I have on the right side?"
- 1) $__F_2 + 2NaI \rightarrow 2NaF + __I_2$
- 2) $2Na_3P + 3CaF_2 \rightarrow 6NaF + ___Ca_3P_2$
- 3) $2Na_3PO_4 + 3CaCl_2 \rightarrow 6NaCl + ____Ca_3(PO_4)_2$
- 4) $2AI + 6HNO_3 \rightarrow 2AI(NO_3)_3 + 3H_2$
- 5) $3 \text{FeCO}_3 + 2 \text{Li}_3 \text{PO}_4 \rightarrow \underline{\qquad} \text{Fe}_3 (\text{PO}_4)_2 + 3 \text{Li}_2 \text{CO}_3$

Identifying, Writing, & Balancing Chemical Reactions

Step 1: Write the formulas for the reactants.

Step 2: Identify the type of reaction.

- Synthesis: $A + B \rightarrow AB$
- Decomposition: $AB \rightarrow A + B$
- Single Replacement: $A + BC \rightarrow AC + B$ (always pair cation & anion!)
- Double Replacement: AB + CD → AD + CB

Step 3: Write the formulas for the reactants.

- Cross charges where elements are bonded.
- ❖ When an element is alone, check to see if it is diatomic: Br I N Cl H O F
 - o If it is, put a subscript of 2

Step 4: Balance the equation.

Reaction type?		Complete the reaction and balance.
1)	Synthesis	Sodium + chlorine \rightarrow 2Na + $Cl_2 \rightarrow$ 2Na Cl
2)	Double replacement	Calcium fluoride + iron II hydroxide \rightarrow CaF ₂ + Fe(OH) ₂ \rightarrow Ca(OH) ₂ + FeF ₂ **it's already balanced!
3)	Decomposition	Strontium nitride \rightarrow Sr ₃ N ₂ \rightarrow 3Sr + N ₂
4)	Single replacement **PreIB: the activity series is not on the SOL Test	Magnesium chloride + potassium \rightarrow MgCl ₂ + 2K \rightarrow 2KCl + Mg