Balancing Chemical Equations

- We balance equations with coefficients to following the Law of Conservation of Mass.
- Remember that you choose an element on left side of the equation. Ask yourself, "How many of that element are on the right side of the equation." Then use a coefficient to "balance" them to be the same number.
- You might have to use the least common multiple.
- Keep polyatomic ions together as a unit. For example, "How many phosphates do I have on the left side? How many phosphates do I have on the right side?"

1) $\ldots_{[} \mathrm{F}_{2}+\ldots \ldots \mathrm{NaI} \rightarrow \ldots \mathrm{NaF}+\ldots \mathrm{I}_{2}$
2) $\ldots \mathrm{Na}_{3} \mathrm{P}+\ldots \mathrm{CaF}_{2} \rightarrow \ldots \quad \mathrm{NaF}+\ldots \mathrm{Ca}_{3} \mathrm{P}_{2}$
3) $\ldots \mathrm{Na}_{3} \mathrm{PO}_{4}+\ldots \mathrm{CaCl}_{2} \rightarrow \ldots \quad \mathrm{NaCl}+\ldots \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
4) \qquad $\mathrm{HNO}_{3} \rightarrow$ $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}+$ \qquad H_{2}
5) \qquad $\mathrm{FeCO}_{3}+$ \qquad $\mathrm{Li}_{3} \mathrm{PO}_{4} \rightarrow$ \qquad $\mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2}+$ \qquad $\mathrm{Li}_{2} \mathrm{CO}_{3}$

Identifying, Writing, \& Balancing Chemical Reactions

Step 1: Write the formulas for the reactants.
Step 2: Identify the type of reaction.

- Synthesis: $A+B \rightarrow A B$
- Decomposition: $A B \rightarrow A+B$
- Single Replacement: $A+B C \rightarrow A C+B$ (always pair cation \& anion!)
- Double Replacement: $A B+C D \rightarrow A D+C B$

Step 3: Write the formulas for the reactants.

* Cross charges where elements are bonded.
* When an element is alone, check to see if it is diatomic: Br INClHOF
- If it is, put a subscript of 2

Step 4: Balance the equation.

Reaction type?	Complete the reaction and balance.
1)	
2)	
3)	
Calcium fluoride + iron II hydroxide \rightarrow	
4)	

