
Common names on th	e periodic table	:			
A column is called a 🭳	or f	amily			
	period	•			
	1				
	hydrogen 1	150 (5	.150	823	

92 93 94 95 96 Bk

		c	c /		
Write the	names	of the	family /	groups	below.

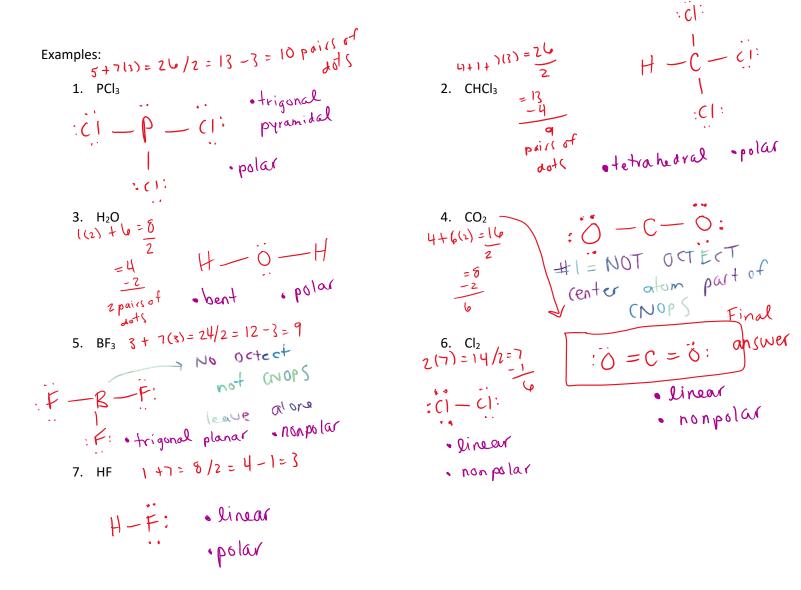
* * Actinide series

Group 1: Alkali Metals

Group 2: Alkaline Earth Metals

Group 7: halogens

Group 8: Noble gases


The large middle section of metals on the periodic table are called ______ transition ____ Metals

Chemical bonding:

- 1. Every atom on the periodic table wants a total of _____ valence electrons.
- 2. The only group on the periodic table with 8 valence electrons are the
- 3. In order to be stable <u>metals</u> will lose electrons and form cations.
- 4. In order to be stable nonmetals will gain electrons and form anions.
- 5. An ionic bond is between metals and nonmetals. An ionic bond will transter electrons between atoms.
- Share electrons between 6. A covalent bond is between 2 or more nonmetals. A covalent bond will atoms.
- 7. Ionic bonds conduct electricity when dissolved.
- 8. Predict the type of bond between each of these pairs of atoms:
 - a. Na and Cl b. Fand O covalent
 - c. Fe and S <u>ioni C</u>
 - d. Se and As ___ covalent
- e. Ca and (PO₄-3) [OniC 9. Lewis structures are only drawn for molecules with _______ (OVALON +
- 10. 1 bond shares _____ electrons.

Drawing Lewis Structures:

- 1. Find the total number of valence electrons.
 - a. Multiply by subscripts in the formula.
- 2. Divide the total number by 2.
- 3. Put the atom that is farthest away from F in the middle (lowest electronegativity)
 - a. Hydrogen NEVER goes in the middle
- 4. Place the other atoms around the outside.
- 5. Draw 1 single bond from each outside atom to the central atom
- 6. Subtract the number of bonds you drew
- 7. Draw in "lone pairs" around each outside atom to satisfy the octet rule
 - a. Hydrogen NEVER has lone pairs
 - b. Left over pairs go on the center
- 8. CHECK YOUR CENTER ATOM FOR AN OCTECT BEFORE YOU ARE FINISHED
 - a. If center atom does not have octet:
 - i. Is it part of CNOPS? If yes erase a lone pair from your outside atoms and share with the central atom.
 - ii. If not part of CNOPS leave it alone ©

Notes for Molecular Geometry:

Bonds	Lone Pairs	Name	Geometry	Lewis Structure
2 ato	oms	linear	B ─ B	^{Cl₂} :Ċ1—-Ċ1:
2	0	linear	B-A-B	°°°2 •°°•••°°•°°°°°°°°°°°°°°°°°°°°°°°°°
3	0	trigonal planar	BBB	#F: F: F: F: F: F: F: F:
4	0	tetrahedral	BA B	H—C—H
3	1	trigonal pyramidal	B-A-B	H—N—H I H
2	2	bent	B-A:	H-Ö:

Notes for polarity:

- A polar molecule means there is a separation of charge or one side is obviously positive and one side is obviously negative.
- You can tell if your Lewis structure is polar if:
 - o 1. There are different types of atoms around the center atom
 - o 2. There are lone pairs on the center atom
- If your molecule only has 2 atoms:
 - o It is POLAR if there are 2 different atoms.
 - o It is NONPOLAR if the 2 atoms are identical.